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SUMMARY

Recent seismic-reflection surveys reveal a frontier province of
exceptional size-~the Navarin basin province--beneath the northwestern Bering
Sea shelf. Structural contours drawn on acoustic basement define three basins
within the province; the basins contain strata 10 to 15 km thick and underlie
more than 45,000 km2 (11 million acres) of the Bering Sea shelf.

Tertiary mudstone dredged from the continental slope averages more than
0.25 percent organic carbon, and Cretaceous mudstone along the continental
slope in Pribilof Canyon contains as much as 1 percent organic carbon.
However, these beds may not be correlative with the lower basin sequences in
the Navarin province because the stratigraphically lower beds wedge out
against the flanks of the basin.

Eocene to Pliocene diatomaceous mudstones exposed on the continental
slope have porosities ranging from 14 to 68 percent (average, 48 percent).
Neogene reservoir beds may be present in the adjacent Navarin province because
sedimentation has matched subsidence, which averaged 100 to 200 m/106 yr
during Cenozoic time. Also, during Neogene time the Navarin basins were fed
by major Alaskan and Siberian rivers, e.g., the Yukon, Kuskokwim, and Anardy
rivers.

Large anticlinal structures in the northern half of the province that may
have diapiric cores, structures associated with growth faults along the flanks
of the basins' strata draped over basement blocks, and stratigraphic pinch
outs and discordances in the basin fill, are all possible traps for
hydrocarbons. Further exploration, including the drilling of stratigraphic

test wells is needed to define this frontier province.
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The Aleutian Basin is one of the three deepwater (more than 3,000m)
sedimentary basins that lie north of the Aleutian Ridge. Several geologic and
geophysical observations made by investigators working in the Aleutian Basin
(summarized by Cooper and others, 1978), when considered collectively, suggest
that the basin is a promising area for hydrocarbon exploration. Observations
relevant to the existence of hydrocarbon accumulations include the
following: 1) the basin contains a thick section of mostly Cenozoic
sedimentary deposits (2 to 9 km thick) overlying an igneous oceanic crustal
section; 2) potentially high thermal gradients exist in the sedimentary
section; 3) structural features (diapirs, faults, basement ridges) are present
throughout the basin; 4) the sedimentary section contains potential source and
reservoir beds; and 5) within the central part of the basin are abundant
VAMP's (velocity amplitude features), which may be caused by trapped gases

within the sedimentary section.
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INTRODUCTION

Since 1976 we have conducted two geological-geophysical expeditions along
the Bering Sea continental margin and shelf in the vicinity of the U.S.-Russia
Convention Line of 1867. 1In 1976 and 1977 we collected approximately 3600 km
of 24 channel and single channel seismic-reflection data as well as lesser
amounts of gravity, magnetic, bathymetric, and high-resolution seismic-
reflection (1.0 kHz and 3.5 kHz) data (Fig. 1). In 1978, we collected single-
channel sparker (160 kJ) seismic-reflection data along the margin and
successfully occupied 20 dredge stations along the continental slope from west
of the Pribilof Islands to the northwest towards Siberia. Publicly available
data are shown by the track lines in Figure 2. A summary description of the
dredge samples has been published by Marlow and others, 1979%a.

The following sections are divided into three parts - the first section
describes the geophysical exploration of Navarin basin, the results of
dredging along the adjacent margin, and updates the petroleum geology of the
area. The second part discusses the results of surveying in the deepwater
areas of the Bering Sea basin. The final section gives recommendations for
treaty negotiations concerned with the northern Bering Sea shelf and Aleutian

basine.
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NAVARIN BASIN PROVINCE AND BERING SEA MARGIN

Geophysical Exploration

In 1970 approximately 1000 km of single channel seismic-reflection
records, using a 160-kJ sparker sound source, were collected in the Navarin
province (Scholl and others, 1970). The reconnaissance records indicated that
a thick stratified section underlies the northwestern Bering Sea shelf.
Therefore, in their report based on these data, Marlow and others (1976) could
only give a rough outline of the basin province. A more detailed outline of
the basins, based on proprietary data, was included in our 1977 report.

During 1976 and 1977 surveys, 800 km of 24-channel seismic-reflection
data were collected over the basin province proper using a sound source of
five air guns totaling 1326 in3. The multichannel data revealed that the
Navarin basin province comprises a series of northwest-trending basins and
ridges (Figs. 3,4) and that the stratified sequence in the basins is 10 to 15
km thick. To convert two-way traveltime on the seismic-reflection records to

depths in meters of kilometers, we used a generalized velocity function.

D = 1.266t + 1.033t% - 0.117¢>
where

D = Depth or thickness in km

t = One-way traveltime

This function was derived by fitting a polynomial curve to velocity data from
150 sonobuoy stations in the Bering Sea. The velocity function used here
supersedes the curve published by Marlow and others (1976).

Although Mesozoic beds may form part of the basin fill, the greater part



of the sequence is probably of Cenozoic age. The sedimentary beds in the
southern two basins are undeformed except along the flanks of the basin, where
reflectors are cut by normal faults. The sedimentary section in the northern
basin is folded into large anticlines 10 to 15 km wide that may have diapiric
cores (profile C-D, beneath the late Miocene-Pliocene unconformity, Fig. 5).
Geophysical coverage of the Navarin province northwest of the 1867 U.S.-Russia
Convention Line is limited to a few lines taken by the U.S. Geological Survey
(no proprietary data exists for the Soviet side of the line), and hence, the

size and extent of the folded beds are unknown.
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Geological Exploration
During 1978 twenty dredge sites were occupied and successfully dredged

from the R/V S.P. LEE along the eastern Bering Sea continental margin (Fig.

6). A total of several tons of rock were collected using a chain-bag
dredge. Samples were recovered in water depths ranging from 750 to 2,750
meters from exposures along the continental slope bordering the large Bering
Sea shelf. A preliminary petrographic description of the major lithologies
recovered at each station is given in Table 1. At one locality, station L5-
78-BS-5, rocks probably recovered from acoustic basement contain the

megafossil, Buchia rugosa, of Kimmeridigian or Late Jurassic age. Similar

lithic volcanic sandstones were recovered at eight other sites, L5-78-BS-2,
-4, -6, -8, -13, -21, -22, and -27. These samples are also thought to be from
the basement complex beneath the margin, but, unfortunately, these rocks did
not yield diagnostic fossils. The basement strata are overlain unconformably
by diatomaceous mudstone or sandstone as old as Late Eocene or early
Oligocene.

Seismic-reflection and gravity data indicate that the basement rocks
beneath the margin are part of a belt of interconnected ridges that extend
from the western tip of the Alaska Peninsula northwest to Siberia, a distance

of nearly 1,250 km (Marlow and others, 1979c).
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Petroleum Geology

Source Beds

The Navarin basin province has not yet been drilled or sampled; thus
little is known about possible source beds in the province's sedimentary
section. Rocks dredged from the Beringian continental slope west and
southeast of the Navarin province include lithified volcanic sandstone at Late
Jurassic age, mudstone of Late Cretaceous age, and less consolidated deposits
of early Tertiary age (Fig. 6). Geochemical analyses and the physical
properties of some of these rocks are listed below:

Table 2. Geochemical analyses and physical properties of rocks dredged from

the Bering Sea continental margin. See Figure 6 for locations.

Sample Lithology Age Organic Pyrolytic Vitrinite Porosity (%)
number carbon hydro reflectance perm.
(md) (Wt.%) carbon (Wt%) (Avg. %)
86-77-BS ————f———
DR1-20 Volcanic Late
sandstone Jurassic 0.79 0.24 .38
DR1-26 Volcanic Late ———f————
sandstone Jurassic 0.26 0.01 1.14
TT-1-021
001 Mudstone Late 0.62 0.11 <40 ———f——
Cretaceous
1L.5-78~-BS
5-5 Sandstone L.Jurassic .27 .02 «63 —_———f———
2-3 Mudstone Paleogene «33 .02 .41 ————fm——
16-9 Mudstone M. Eocene .83 .04 «31 ————f————
2-4 Mudstone L.Oligocene - - - 68.3/5.46
2-11 Siltstone L.Oligocene - - - 45.1/1.25
5-10 Tuff L.Oligocene - - - 50.7/19.0
7-3 Mudstone M.Miocene - - 57.4/1.67

Pyrolytic analyses of these rocks indicates that none are good source
beds for petroleum, with the possible exception of the Cretaceocus mudstone

(sample # TT-1-021-001) and one Upper Jurassic sandstone (Sample #S6-77-BS-DR-

~12-



1-20). However, the mudstone was dredged from the continental slope in
Pribilof Canyon, 500 km southeast of the Navarin province. The outcrops
sampled by rock dredging are generally sandy units that may not be
representative of finer-grained possible source beds that are exposed either
along the margin or lie within the sub-shelf basins. Also, many of these
dredge samples are from exposures that crop out too far down on the
continental slope to be representative of the lower sediment sections in the

basins of the Navarin province.

_13_



Reservoir Beds

The porosities of Oligocene to Pliocene rocks dredged from eight sites
along the Bering Sea continental margin range from 14 to 68 percent (avg. 48
percent). These Tertiary samples are generally very porous -~ probably because
of abundant diatom frustules. The permeability of the four samples tested is
variable, no doubt due to submarine weathering and cementation. Tertiary
outcrops can be traced as seismic reflectors to the subshelf basins, where, if
the beds remain diatomaceous, good potential reservoir beds may occur.

Neogene reservoir rock beds of shallow-water origin are likely to be
present in the Navarin basins because sedimentation has matched subsidence,

which averaged 100 to 200 m/10°

yr during Cenozoic time. The thick sections
of these basins beneath the Bering Sea shelf accumulated near the mouths of
major Alaskan and Siberian rivers, including the Yukon, Kuskokwim, and

Anadyr. During Neogene time, the shelf was swept by numerous marine
transgressions and regressions (Hopkins, 1967; Hopkins and Scholl, 1970). All
these factors suggest the likely deposition of neritic and deltaic strata.

The stratigraphically lower sections of the basins are presumed to
include upper Mesozoic and lower Tertiary beds. The geologic evolution of the
Bering Sea shelf and margins suggests that in late Mesozoic and early Tertiary
time, the then-forming shelf basins were flanked by coastal mountains,
peninsulas, and islands. These subsiding, yet relatively high, land masses of

Mesozoic rock probably shed coarse clastic debris to the adjacent basins

during early Tertiary time.

=14~



Traps

Strata in the northern basin of the Navarin province are folded into
anticlinal structures 10-15 km across (Fige. 5); this folding may have been
caused either by diapirism or by lateral compression. Only three survey lines
cross the folds here, and the size and extent of the folds are unknown. The
anticlines are cut or folded by an unconformity that is overlain by a few tens
of meters of flat-lying strata. High-amplitude reflection events are observed
within the strata above the balded folds. Beds in the southern two basins are
cut by normal faults along the flanks of the basins. Increase in the offset
across these faults with depth indicates that the faults are growth structures
that formed contemporaneously with basin filling.

Potential stratigraphic traps also exist within the Navarin basins. For
example, beds in the lower basin fill thin toward the basement flanks of the
basin and generally dip toward the basin axis, so that fluids migrating updip
could be trapped against denser, less permeable rocks of the Mesozoic
basement. 1In addition, the lower stratigraphic sequence in the basin is often
overlapped discordantly by the younger overlying beds. Thus hydrocarbons
moving updip along the lower beds could be contained by impermeable layers in
the upper flat-lying strata.

Other potential traps for hydrocarbons in the Navarin province include
drape structures, i.e. strata in the bottom of the three basins often are
draped over blocks in the basement and this closure could form potential traps
for migrating fluids from the basement complex. Some of these features are
quite large - offset on the basement blocks often is several thousand meters

and the blocks extend laterally more than 5-10 km.
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Summary

The Navarin basin province is a recently discovered frontier shelf area
of significant hydrocarbon potential. Though relatively unexplored and

2 (11 million acres) of the

unknown, the province underlies at least 45,000 km
shelf and comprises three large basins. The sedimentary sequences filling the
basins are 10 to 15 km thick. Although Cretaceous units may form part of the
stratified sequences, most of the section is probably of Cenozoic age.

Reconnaissance geophysical data reveal anticlinal or diapiric(?)
structures, stratigraphic pinchouts, and growth faults within the basins.
Discoveries of 0il and gas in Tertiary beds in nearby Siberia encourage
speculations that hydrocarbon deposits occur in the Navarin basins. The vast
size of these basins statistically argues for the presence of oil and gas
beneath the northwestern Bering Sea shelf.

Further exploration of the Navarin basins and the adjacent continental
slope is needed. Seismic-reflection, and seismic-refraction surveys, as well
as gravity and magnetic data are especially needed to understand the geologic
history of these large structures. Samples obtained by dredging on the
continental slope and by direct drilling in the basins may confirm the

existence of suitable source and reservoir beds within the Navarin province.
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ALEUTIAN BASIN PROVINCE

Introduction

The Bering Sea continental margin extends 1300 km northwest from the
Aleutian Ridge to Cape Navarin, Siberia. The outer margin which, includes the
outer continental shelf, the continental slope, Umnak Plateau and the
continental rise, is cut by several immense submarine canyons. Thick
accumulations of Cenozoic strata are found along the sediment-draped parts of
the continental slope as well as beneath the abyssal Aleutian Basin. The
transition from continental crust, which is incised by deep shelf basins, to
oceanic crust, which is covered by thick sediment, occurs beneath the
continental slope.

The Aleutian Basin is the deep water (greater than 3,000 m) basin that
lies north of the Aleutian Islands adjacent to the Bering Sea continental
shelf. The basin, about the size of Texas, is underlain by a 2-9 km-thick
flat-lying sequence of mostly Cenozoic sediment that rests on an igneous
oceanic crustal section. Prior to 1974, marine investigations in the Aleutian
Basin were directed at understanding the basin's regional geologic and
geophysical framework; more recent investigations by the U.S. Geological
Survey have been aimed at assessing the basin's hydrocarbon potential.
Preliminary results suggest that the four major requirements for hydrocarbon
accumulations may be present, namely structural and stratigraphic traps,
source rocks, reservoir beds, and an adequate thermal and sedimentation
history.

The recent energy resource studies indicate that: 1. numerous structural

features (gentle folds, diapirs, basement ridges) are present in the central
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and eastern parts of the basin; 2. acoustic features called VAMP's (Velocity
Amplitude features) are common (over 350 identified) in the central basin;
these features may be caused by pockets of gases and possibly other
hydrocarbons that have been trapped in the sedimentary section; 3. the
sedimentary section consists of diatomaceous sediment overlying indurated
mudstones; high porosities (58%-85%) and good permeabilities (10-35
millidarcy) in the diatomacecus sediment suggest it is a potential reservoir
unit while the thick section of underlying mudstone may contain source beds:;
4. concentrations of organic gases, primarily methane, in the upper 1-3 meters
beneath the seafloor are very small, they increase with depth, and they are
highest in areas near V?MP'S, and; 5. the thermal gradient and the sediment
thickness are sufficiently large to allow hydrocarbon maturation at depth, if
suitable organic material is present.

Our initial results suggest that the Aleutian Basin deserves further

exploration as a site for possible hydrocarbon accumulations.
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Overview

Excellent syntheses of the Bering Sea Basin and surrounding areas have
been given by Ewing and others (1965), Stone (1968), Gnibidenko (1973), Scholl
and Creager (1973), Ludwig (1974), Scholl and others (1975), and Cooper and
others (1977c); a brief summary of the ideas presented in these papers is
given here.

The Bering Sea Basin, typical of many other marginal basins surrounding
the Pacific Ocean, contains a thick (2-9 km) section of mostly Cenozoic
sediment impounded behind an outer island arc, the Aleutian Ridge (Fig. 7).
Except for the great thickness of the overlying sedimentary section, the
crustal structure of the basin is geophysically similar to an oceanic rather
than a continental area. This similarity along with other geologic and
geophysical data from both the basin and from surrounding areas, suggests that
the area may have been part of the North Pacific Ocean before Late Mesozoic
(60-70 m.y.) time. At the end of the Mesozoic Era, the initial development of
the Aleutian Ridge fractured the oceanic plate (Kula plate) and isolated a
segment of oceanic crust on the north side of the newly formed ridge. The
growth of the two interior submarine ridges, Bowers and Shirshov Ridge (Fig.
7), may also have started at this time. Since Late Mesozoic time, terrigenous
and pelagic sediment have continued to drape the continental slopes and fill
the Aleutian and Bowers basins with a nearly flat-lying section of sedimentary
rock.

Geologic Data

Geologic sampling of surface sediment in the Aleutian Basin (Hanna, 1929;
Lisitsyn, 1966; Gershanovich, 1968; Frazer and others, 1972; Anonymous, 1977)
indicates that the primary constituent is siliceous mud, with varying amounts

of interbedded terrigeneous material depending on the proximity of the
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sampling site to shallow regions. The upper 627 meters of the basin's
sedimentary fill was drilled at DSDP site 190 (Fig. 7) and has been described
by Creager, Scholl and others (1973) and Scholl and Cooper (1978). Three
sedimentary units were penetrated - an upper 375-meter-thick unit of
diatomaceous silty clay with interbedded turbidites (Holocene through Late
Pliocene), a middle 240-meter-thick unit of semi-indurated diatomaceous silty
clay (Late Pliocene through upper Miocene), and a lower unit of indurated
mudstone of unknown thickness (upper middle Miocene).

Acoustic basement (basalt?) has not been reached at drilling sites within
the thick sedimentary section of the Aleutian and Bowers Basins; consequently,
the age and lithology of the greater part of the section (1-7 km) are
unknown. Regional geologic considerations and rock samples collected along
the continental slope (Scholl and other, 1966; Hopkins and others, 19692), led
Scholl and others (1975) to suggest that the oldest sedimentary rocks
overlying acoustic basement may be of late Mesozoic or early Tertiary age.
However, the identification of Early Cretaceous seafloor spreading anomalies
in the Aleutian Basin (Cooper and others, 1976a, b, c) supports the notion
that the lower Cretaceous sedimentary units may lie at the base of the

sedimentary section.

Geophysical Data
Single-channel seismic-reflection profiles recorded in the Bering Sea
Basin (Ewing and others, 1965; Ludwig and others, 1971a; Creager, Scholl and
others, 1973; Scholl and others, 1976; Rabinowitz and Cooper, 1977; Cooper,
unpublished records) indicate an internally reflective and well-stratified

layer overlying a deeper acoustically opaque unit. Seismic-refraction surveys
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(Shor, 1964; Houtz and others, 1970; Ludwig and others, 1971b; Hamilton and
others, 1974; Rabinowitz and Cooper, 1977; Childs and Cooper, 1979) confirm
that the change in reflective units generally coincides with a well defined
refraction horizon (2.7-2.9 km/sec) that separates overlying lower velocity
units (1.5-2.0 km/sec) from underlying higher velocity (3.5-4.7 km/sec)
layers. The refraction data also confirm that the basin's thick sedimentary
sequence is underlain by oceanic crust. This crust consists of a 1-2 km-thick
layer with a velocity of 5.0-6.0 km/sec (oceanic layer 2), a 2-6 km-thick
layer with a velocity of 6.6-~7.2 km/sec (oceanic layer 3) and a high-~velocity
layer of 7.5-8.2 km/sec (mantle). Figure 8 shows a refraction velocity
structure section that extends across the Bering Sea Basin. Multichannel
seismic-reflection data have also been recorded along part of the structure
section (MCS Line 44, Cooper and others, 1977b); these and other unpublished
multichannel data (authors' files) confirm the great thickness of sedimentary
beds (2-9 km) that fill the basin. These data also reveal folded and faulted
sections along the north side of Bowers Ridge and at the base of the
continental slope in the eastern Aleutian Basin.

Magnetic surveys in the Bering Sea Basin (Vorobev, 1970; Kienle, 1971;
Soloveva, 1968; Regan and others, 1975; Cooper and others, 1975; Cooper and
others, 1976a, b; Cooper and others, 1977c) illustrate two distinct types of
anomalies. The first type is a set of narrow 25-100 km-wide linear anomalies
believed to have been formed by seafloor spreading (Cooper and others,
1976b). The second type is a long-wavelength negative anomaly centered over
the Aleutian Basin (Regan and others, 1975; Cooper and others, 1977c), an
anomaly thought to be related to deep-seated thermal activity beneath the

basin (Cooper and others, 1977c).
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Published gravity data (Kienle, 1971; Watts, 1975) reflect the presence
of both the large submarine ridges (gravity highs) and the thicker sections of
sedimentary beds that underlie the perimeter of the basin (gravity lows).
Broad low-amplitude anomalies are in the center of the basins and are the
result of regional variations in either the depth to igneous basement or in
the thickness of the oceanic crust (Cooper and others, 1977c).

Several heat flow measurements have been made in the Bering Sea Basin
(Foster, 1962; Erickson, 1973; Watanabe and others, 1977; Marshall and others,
1978). Watanabe and others (1977) report an average heat flow of 1.44+ 0.22
cal/cmz/sec for the Aleutian Basin, a value that is compatible with the
predicted heat flow for Mesozoic oceanic crust. A regional correlation of
higher heat flow values with broad magnetic anomalies in the central and
eastern Aleutian Basin is noted by Cooper and others (1977c) and is believed

to result from higher subcrustal temperatures in these areas.

Hydrocarbon Exploration

Prior to 1974, the primary interest of investigators working in the
Bering Sea Basin was to decipher the basin's regional geologic and tectonic
history. More recent studies have been directed toward evaluating the
hydrocarbon potential of the basin. The recent studies indicate that four of
the important factors generally required for the accumulation of hydrocarbon
deposits may be present: (1) adequate structural or stratigraphic traps, (2)
an appropriate thermal and sedimentation history, (3) source rocks, and (4)
reservoir beds. Several observations made since 1974 have contributed to this
conclusion.

A. Recognition of marginal basins in general as potential hydrocarbon

24



accumulation areas (Schlanger and Combs, 1975);

B. Identification of acoustic features (VAMP's) within the sedimentary
section which may be associated with low-velocity, gas-saturated sediment
(Cooper, 1974; Scholl and Cooper, 1978);

c. Identification of a possible thermal anomaly beneath the central Aleutian
Basin (Cooper and Scholl, 1974; Cooper and others, 1977c¢c);

D. Identification of structural features, such as intrabasin faults,
basement ridges, and diapirs, features that are often associated with
VAMP's (Cooper, 1977; Cooper and others, 1977a; Cooper and others, 1979).

E. Recognition of suitable organic carbon content and organic gases in
sedimentary deposits of the Bering Sea Basin (Gershanovich, 1968; Bode,
1973; Claypool and others, 1973; Marlow and others, 1976; Underwood and

others, 1979).

Structural and Acoustic Features

The abundance of Velocity Amplitude features (VAMP's), the deep-water
equivalent of seismic "bright spots" (Scholl and Cooper, 1978), throughout the
Aleutian Basin is the strongest evidence that structural and stratigraphic
traps may be present within the upper part of the sedimentary section. VAMP's
appear on both the single-channel and multichallen seismic data (Fig.9) and
are characterized by columns of concave-upward reflectors that often increase
in amplitude with depth, high-~amplitude reflections and phase reversals
immediately above the columns, and structural upbowing of the beds and
seafloor immediately above the feature. Scholl and Cooper (1978) interpret
the VAMP's as resulting from a low-velocity zone of gas-charged deposits and

possibly other hydrocarbon products within the upper part of the sedimentary
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section. Detailed surveys show that VAMP's often occur over the top of
basement ridges (Fig. 10) but are not always related to basement topography
(Fig. 9). Pseudostructural relief on the acoustic basement is observed in the
time base reflection profiles across some VAMP's. The small depression (0.15
sec) in the basement reflector beneath VAMP V2 (Fig. 9) results mostly from
the time delay caused by the low-velocity deposits near the top of the VAMP.
The isopach map of the sedimentary section above acoustic basement (Fig.
11) indicates that large local variations in sediment thickness exist beneath
the central and eastern parts of the Aleutian Basin. Because the seafloor is
the abyssal areas is nearly flat, these local variations reflect undulations
in the acoustic basement surface. Folding and faulting of sedimentary
horizons are commonly found over buried basement relief such as ridges,
isolated knolls and domes, and fault-displaced basement rocks. A typical
example of a large (3 km relief) buried basement feature, Sounder ridge, is
located in the eastern Aleutian Basin. Profile L6 (Fig. 12) reveals that the
sedimentary section above the ridge is folded, the seafloor is uplifted, and
faulted reflectors occur at depth along the ridge flanks. Sounder ridge, as
well as other ridges in the eastern Aleutian Basin, has a complex history of
growth. The difference in acoustic character of the reflectors and the
difference in the total sediment thickness on the northwest and southeast
sides of the ridge imply that the ridge is an old feature (early Tertiary?)
that has acted as a long-term sediment barrier; structural deformation of the
shallow sediment and seafloor suggest a renewal of ridge growth in Late

Cenozoic time.
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Figure 10. Box Survey (BSl) over an area of VAMP's; see Figure 7 for location.
The contour map (upper right) gives the total depth (km) from sea
level to acoustic basement. In the three traverses, the VAMP's
occur over the top of a buried basement ridge that has a relief of
nearly 1500 meters. The upbowing of reflectors directly above the
VAMP along line 32 is also seen as a 2-meter upbowing of the sea-
floor in high resolution bathymetric profiles (not shown). Here,
the VAMP's appear to be related to basement relief, whereas in
Figure 9, the VAMP is not. The VAMP along line 30 has been cored
at Station 2 (see Figure 13). Depth scale from Cooper and others
(1977a).
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Thermal and Sedimentation History

Schlanger and Combs (1975) indicate that the hydrocarbon potential of a
mature basin, such as the Aleutian Basin, is largely dependent upon the length
of time that its sedimentary section has been exposed to the high burial
temperatures necessary for the kerogen-hydrocarbon transformation. If curves
for temperature versus age and depth for known oil and gas producing basins
(Schlanger and Combs, 1975, Figs. 10, 11) are applied to the Aleutian Basin,
the generation of hydrocarbons could occur in horizons as young as early
Miocene (18 to 23 m.y.). Although the observed heat flow values in the
Aleutian Basin are not high, the average heat flow (1.44+0.22 ucal/cmzsec;
Watanabe and others, 1977) and the thermal conductivity of the sediment (2.5
mcal/cm—sec-oc, Erickson, 1973) give a thermal gradient (58°/km) that is
sufficient to reach the onset of hydrocarbon generation (50-100°C) at
relatively shallow sub-bottom depths (0.9-1.8 km). The sedimentation rate
measured at DSDP site 190 in the western Aleutian Basin is high, about 100
m/m.y from Holocene to upper Miocene time (Creager and Scholl and others,
1973). Consequently, the actual heat flow values and associated temperature
gradients, after correction for sedimentation effects, may be 10-25% larger
than observed. Locally higher heat flow valves or higher sedimentation rates
would both cause maturation temperatures to occur at shallower sub-bottom
depths. Because the sediment thickness in the Aleutian Basin ranges from 2 to
9 km (Fig. 5), temperatures suitable for biogenic and thermogenic degradation

of organic matter (50 - 100°C) may be found throughout the basin.

Organic Carbon-Hydrocarbons

DSDP holes within the Aleutian and Bowers Basins (Sites 188, 189, 190)
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are the sole source of sub-seafloor information concerning the organic carbon
and hydrocarbon content of sediment underlying the abyssal basins. The
maximum sub-bottom penetration, 871 meters, is at site 189. Organic carbon
values for the diatomaceous silty clay and mudstone (Holocene to middle
Miocene age) sampled at the three DSDP holes are nearly uniform with depth and
range from 0.2% to 0.8% (Bode, 1973); the average is 0.42 + 0.15% for 50
samples. Late Cenozoic sedimentary rocks cored (Gershanovich, 1968) and
dredged (Marlow and others, 1976; Underwood and others, 1979) from the
northern and eastern Bering Sea continental margin have a similar organic
carbon content.

Organic gases in the abyssal basin sediment have been measured both in
surface samples from the Aleutian Basin and in sub—-surface cores at DSDP holes
185, 189, and 191. The surface samples were collected and analyzed aboard the
vessel SEA SOUNDER in June 1977. Gas chromatography on water samples extacted
from fresh, two-meter gravity cores shows that only small amounts of gas are
present, the gas is totally dissolved in the interstital water (no free gas
bubbles), and the primary constituent is methane. A compilation of the gas
analyses (Fig. 13) indicates that the methane concentration increases with
sub-bottom depth at all sites. Generally, those sites (Sta. 2, 3, 6) located
in areas where VAMP's are abundant (see Fig. 11) have higher methane
concentrations at comparable sub-bottom depths than those sites lying either
at the edge (Sta. 1, 4) or outside (Sta. 8, 9) of the zone of VAMP's.
Interestingly, the highest concentration of methane is found directly over a
VAMP (Sta. 2; Fig. 13) that is associated with a buried basement ridge (BS 1,
Fig. 10). Gases in sediment cores recovered at DSDP Arilling sites are also

primarily methane, although ethane is present at site 189 near the base of the
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Aleutian Ridge (Mclver, 1973; Claypool and others, 1973).

The origin of the organic gases in both surface and subsurface samples
could be the result either of bacteriological fermentation or of thermal
degradation of organic compounds. Carbon-isotope measurements for the methane
gases recovered at DSDP sites close to the Aleutian Basin (sites 185, 189,
191) are relatively small (C 13 = - 70°/00; Claypool and others, 1973),
suggesting a biogenic source. Similar isotope measurements could not be made
on the surface gas samples because the guantity of gas in the surface cores
was too small. The paucity of the higher hydrocarbon fractions in the surface
gases also favors a biogenic origin for the methane but does not exclude a
thermogenic origin. At site 189, the amount of ethane increases with depth,
and like other DSDP sites in the Bering Sea area (186, 191), the absolute
concentration of ethane shows a positive correlation with the inferred
temperature flux; sites with higher heat flow generally have larger ethane
concentrations at the same depth (Claypool and others, 1973, Figure 9). The
origin of the ethane at these sites is thermogenic, and the ethane could be
coming either from in situ generation along the natural geothermal gradient or
from upward migration out of an existing hydrocarbon reservoir (Claypool and
others; 1973). Organic gas measurements were not made at DSDP site 190 within
the Aleutian Basin, therefore we do not know if higher hydrocarbon fractions
are present at depth near an area that has a concentration of VAMP's.

Low-surface concentration of gas, even over potential gas pockets
(VAMP's), suggest that if gases are accumulating at depth, they are not
diffusing through the overlying sediment and are not reaching the surface in
significant gquantities. The multi-channel data recorded over a VAMP (V2, Fig.

9), which has been cored and analysed for surface gases (Sta. 6, Fig. 13),
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show that the reflectors between the top of the VAMP and the seafloor are
discontinuous and phase inverted ("D". Fig. 9). These distributed reflectors
suggest that larger concentrations of gas than measured in the upper two

meters beneath the seafloor may be present at shallow sub~surface depths.

Potential Reservoir Beds

Subsurface porosity and permeability values have been determined for a
small number of core samples recovered from DSDP sites 190 and 188 (Fig. 8A,
8B; Table 3). These two sites are located in different physiographic areas of
the deep-water Bering Sea basin , yet the stratigraphic sequences drilled at
both sites contain diatomaceous sedimentary beds that may be potential
reservoir units. Site 190 lies on the western edge of the Aleutian Basin
above a buried basement knoll where the sedimentary sequence is shallower and
thinner than in the surrounding basin area. The depositional regime and
physical properties (porosity and permeability) at site 190 may differ from
those elsewhere in the central Aleutian Basin (zone of VAMP's) because the
drilling site is over the knoll. These differences may be small, however,
since the acoustic stratigraphy is laterally continuous from site 190 to the
center of the basin. Site 188 lies at the perimeter of Bowers Basin on the
west flank of Bowers Ridge; the seafloor here is several hundred meters above
the basin floor. The sedimentary section at site 188 comprises diatom ooze
that has a smaller terrigenous silt and clay component than found at site
190. The porosity and permeability data from site 188 may also be applicable
to the central Aleutian Basin where similar oozes are thought to occur.

In general, the porosity of the diatomaceous sediment recovered at Bering

Sea drilling sites increases with increasing amounts of diatomaceous debris in
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the sediment (Creager, Scholl and others, 1973; Figs. 14a,b). Compressibility
studies on the Bering Sea sediment (Lee, 1973) show that the porosity of
diatomaceous ooze (<50% diatom content) does not decrease significantly with
increasing burial depths. As the detrital silt and clay component increases
(diatom content decreases), however, the sediment becvomes more compressible
and the porosity decreases with depth. The range in porosity values is nearly
identical (58%-85%) for the diatomaceous sections drilled at sites 190 and
188, however, the scatter in the values for the individual 9-meter cores is
different (Figs. 14a,b). At site 188, where the diatom concentrations are
high, the correlation between diatom content and porosity is good and the
scatter of porosity values is low (+ 5%). Conversely, at site 190, where the
diatom concentrations are lower (30-70%), the diatom-porosity correlation is
less apparent and the scatter in porosities is higher (+ 9%).

Only a small number of permeability measurements have been made at both
sites but these values appear to increase with increasing depth (Figs.
14a,b). At site 190, the permeability of the diatomaceous sediment increases
from about 10 millidarcys at 150 meters to about 30 millidarcys at 600
meters. Similar values at equivalent depths are observed at site 188. At
depths where permeabilities increase, the visual estimates of diatom content
decrease (Figs. 14a,b). The decrease (300-600 meters sub-bottom) is more
apparent at site 188 than site 190. This apparent correlation between
permeability and diatom content is weak because of the unknown error in the
visual diatom estimates made onboard ship. Stosur and David (1976), in their
work on the diatomite formation of the Lost Hills field, California, have

noted that the purer the diatomite, the lower the permeability and the higher
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the porosity. They believe high capillary pressure in the diatoms inhibits
fluid motion and thereby causes lower permeability for purer diatomite. The
correlation observed by Stosur and David (1976) is similar to that which
apparently exists at sites 188 and 190. Other investigators, working in the
siliceous shales of the Monterey Formation of California, find, however, that
the permeability increases with increasing porosity (Larry Beyer, written
communication, 1979). The explanation for the downward increase in
permeability in the Bering Sea is unclear, yet we suspect that this increase
is related to the diatom stratigraphy of the sedimentary section.

The high porosity (60-80%) and good permeability (10-30 millidarcys) of
the upper 600 meters of the sediment sections at sites 190 and 188 mark these
upper diatomaceous sequences as potential reservoir units for the accumulation
of hydrocarbons.

The lower boundary of the potential reservoir units may be controlled by
a diagenetic boundary that separates the overlying diatomaceous sediment from
underlying indurated mudstone. Beneath most of the Aleutian Basin, the top of
the mudstone unit is a prominent refracting horizon that occurs at a sub-
bottom depth of about 1 km. At site 190 the boundary is an unconformity
associated with a thinned sedimentary section that overlies a buries basement
knoll. The unconformity probably does not exist where thicker sedimentary
sequences underlie the basin floor. A similar diagenetic boundary has been
encountered at most Bering Sea DSDP sites (Hein and others, 1978), and, at
site 185, the boundary is associated with higher than typical levels of
methane gas (Creager, Scholl, and others, 1973).

The diagenetic boundary is marked by a distinct decrease in both porosity

and permeability values (Lee, 1973; Table 3). Hein and others, (1978)
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indicate that the boundary results from the dissolution of biogenic silica
(opal=-A) and the reprecipitation of crystalline silica (opal-CT). Porosity
and permeability values have not been determined for the mudstone at site 190;
however, at site 188, the porosity drops from 58% to 32% and the permeability
decreases from 35 to 0.1 millidarcy across the diagenetic boundary (Figs.
14a,b); Table 3). A drop in porosity across the boundary from 75% to 40% is
noted by Lee (1973) at site 185. The lateral continuity of the diagentically
altered mudstone unit in the Aleutian Basin may regionally restrict the upward
migration of deeply buried thermocatalytic hydrocarbons. Acoustic evidence,
such as the observed increase in velocity pull-down with increasing depth
beneath some VAMP's, indicates, however, that low velocity pockets may occur
deep within the mudstone unit. Possibly these pockets imply that fracture
porosity and permeability near VAMP's may allow the upward migration of
hydrocarbons into overlying diatomaceous units.

Two lines of evidence suggest that laterally extensive reservoir seals
may exist in the Aleutian Basin. At site 190, the lowest permeability values
are measured within the turbidite-bearing sequence (0-175) where the diatom
content is lowest (clay/silt content highest). The large variation in the
fine-grained clay/silt content of the cores in the turbidite sequence
indicates that thin, but unsampled, units of impermeable material may exist.
The seismic reflection data provide additional evidence relevant to reservoir
seals. Multichannel seismic data reveal that a laterally continuous sequence
of "railroad track" reflectors underlies the seafloor to a sub-bottom time of
0.5 sec. At this depth, the localized high-amplitude reflections that mark
the top of VAMP's appear as narrow disruptions along a continuous reflection

horizon. The lateral disruptions can be seen over a horizontal distance of
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200-250 km. Other VAMP's that are recorded in the seismic data from different
parts of the basin also have their tops near this horizon. Traced to DSDP
site 190, the horizon is found to lie near the base of the turbidite-bearing
unit. If, as we have speculated, gas or other hydrocarbons have accumulated
below this horizon, then a seal at a sub-bottom depth near 0.5 sec has
regionally formed in the upper part of the central basins sedimentary section.
A simple model that explains the acoustic configuration of VAMP's and
that is based on the porosities and permeabilities measured at site 190 and
188 is illustrated in Figure 15. In the model, the diatomaceous sediment is
the primary reservoir unit that contains pockets of low velocity material
(LW). This reservoir unit is sandwiched between an overlying turbidite-
bearing unit and an underlying diagenetically altered mudstone unit. The
pockets of low velocity material at the top of the VAMP's and within the
reservoir are marked by the high-amplitude phase-inverted reflectors and small
velocity pull-downs. A more pronounced velocity pull-down (more low velocity
material) occurs at greater sub-bottom depths near the mudstone boundary, and
typically continues to increase for a few hundred meters beneath the boundary.
An interesting stratigraphic analog of the Bering Sea may be found in the
Sea of Japan. The sedimentary section at site 190 is similar to ones drilled
in the abyssal part of the Sea of Japan (sites 299, 301; Ingle, Karig and
others, 1975). At sites 299 and 301, ethane gas occurs at a sub-bottom depth
of 500 meters near the base of a turbidite section that overlies diatomaceous
sediment. The diatomaceous beds appear to be the reservoir units for the gas,
which is inhibited from migrating upward by the capping, less permeable
turbidites. The large quantity of ethane gas found near the base of the

turbidites forced a termination of drilling operations. Unlike the Bering

42



Jeyl JUSWIPSS SnoldDewoleTp 8y3z ST FTUh ITOAIISDIA SYL
L @anb1g °99

INOLISANW

(Posyun T zA) -o.u:t-/a..m

b e s . e e .

QILIVINONI
- iwis

3700
waolvig
ANV

AVID

ALlS

WOLvIa

siioReny
HlIm

ADOTOHLIN
d34434NI

*(eLL6T) sasyzo pue xadoo) woxy areos yzdeqg

* SUOqIRD0IPAY

asyzo 10 seb A1qrssod ‘Tetasjew A3TO00T9a-MOT JO s3aydod &q pasned
S,dWVA 39Ul UTYITM punoj axe sumop-Tind X3tooTsa Butdy

axe pue

-I9pun Y3jTM SI03O9TJax pajasaur-sseyd ‘epnirrduwe-ybIH

cIuojspnu

pojeanput Aq urerispun ST pue S93TPTJIny buTiTiaao XAq pareas st

pue

W w; 4

[(yrenveneetdeditiy

QT

N =~

(LI

1 et !

o Adtagaqtt]

*UOT3EO0T J03

‘06T 93TS d4asd woxl sjuswaansesuw Ajaxadoxd peorsdyd
‘ABOTOY3TT JO sux93l Ul S,dWVA bututerdxs 103 Topou arduts

T °anbrg

(¢ SNOBYVOOHQAH)
VNIV ALIDOTIIA MOT : INAT]

e e — I —
~——  —— —" T
——

e T ——
B ——

WA 40
S1IIMO0d

HIOAY3ISIY
AYVINIdd

13A0ON

1/ H3AV]

I BVYINYIDNI

W 0GeBE

+—HJOOT14V3S



Sea, VAMP's have not been reported from the Sea of Japan.

CONCLUSIONS
The Navarin basin province is a recently discovered frontier shelf area
of significant hydrocarbon potential. Though relatively unexplored and

2 (11 million acres) of the

unknown, the province underlies at least 45,000 km
shelf and comprises three large basins. The sedimentary sequences filling the
basins are 10 to 15 km thick. Although Cretaceous units may form part of the
stratified sequences, most of the section is probably of Cenozoic age.

Reconnaissance geophysical data reveal anticlinal or diapiric(?)
structures, stratigraphic pinchouts, and growth faults within the basins.
Discoveries of o0il and gas in Tertiary beds in nearby Siberia encourage
speculations that hydrocarbon deposits occur in the Navarin basins. The vast
size of these basins statistically argues for the presence of oil and gas
beneath the northwestern Bering Sea shelf.

Further exploration of the Navarin basins and the adjacent continental
slope is needed. Seismic-reflection, and seismic-refraction surveys, as well
as gravity and magnetic data are especially needed to understand the geologic
history of these large structures. Samples obtained by dredging on the
continental slope and by direct drilling in the basins may confirm the
existence of suitable source and reservoir beds within the Navarin province.

The presence, or absence, of economically significant hydrocarbon
accumulations in marginal basins of the Pacific, such as the Bering Sea Basin,
is unknown, primarily because little exploratory work has been attempted. The
extreme water depths (3,000-4,000m) pose severe technical problems for

exploration as well as possible production activities. Exploratory programs
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in these areas have, therefore, been limited to regional reconnaissance
surveys. Since 1974, energy resource investigations in the Aleutain Basin by
the U.S. Geological Survey have identified several intrabasin features which,
we believe, suggest that the basin may be the habitat for significant
accumulations of gas and possibly other hydrocarbon products.

Perhaps the best evidence for these deposits, in the absence of deep
subsurface hydrocarbon measurements, is the widespread occurrence of VAMP's.
The general acoustic character of deep-water VAMP's (phase inverted, high
amplitude reflector underlain by a velocity pulldown) is similar to that of
some "bright spots"™ discovered in hydrocarbon producing areas on the
continental shelf. The question of what hydrocarbons, if any, are present and
are causing these acoustic features (VAMP's) cannot be answered without
drilling information in the central Aleutian Basin. On the basis of limited
subsurface information that includes an analysis of gases in shallow sediment
from the Aleutian Basin (Fig. 13) and topical studies on DSDP cores from
surrounding areas (Creager, Scholl and others, 1973) the likely cause of the
VAMP's is the presence of low velocity pockets of biogenic methane gas. The
gas appears to be trapped within porous diatomaceous sediment that is
sandwiched between underlying indurated mudstone and shallow turbidite unit.

Other higher order hydrocarbons originating from greater depths may also
be present, however. A common characteristic of VAMP's that is difficult to
explain unless there is additional low velocity material, presumably
hydrocarbon charged deposits beneath the VAMP's, is the increase in the
velocity pulldown with depth that commences near the top of the mudstone unit
(Fig. 15). These hydrocarbons, if present, could be migrating upward from

either in situ generation points or deep seated reservoirs. The association
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of VAMP's with basement relief (Figs. 10 and 11) allows the existence of the
deep structural pathways along which thermogenic hydrocarbons could move
upward from the mudstone into the diatomaceous reservoir rocks. Temperature
gradients within the sedimentary section are sufficiently large to allow in
532 generation of themrmogenic hydrocarbons at moderate depths (2-4 km) if
suitable organic material is present within the mudstone unit.

Figure 16 summarizes three important factors for evaluating the
hydrocarbnon potential of the Aleutian Basin, namely the areas of thick
sediment, large basement relief, and VAMP concentrations. Interestingly, the
area in which VAMP's are found generally corresponds with the areas of thinner
sediment (less than 4 km thick) and larger basement relief (greater than 1
km). The same area may also have large methane concentrations in the surface
sediments (Fig. 13) and slightly higher heat flow values (higher sub-seafloor
temperatures; Cooper and others, 1977c). In addition, the central basin is
characterized by long-wavelength magnetic lows that are recorded in both
satellite and shipboard measurements (Fig. 17). The unusual inverse
correlation of negative (rather than positive) magnetic anomalies with shallow
igneous basement beneath the thin sediments suggests that the sub-crustal
heating and demagnetizing processes proposed by Cooper and others, 1977c, may
be affecting this area. If thermogenic hydrocarbons are present in VAMP's,
they may be the manifestation of the regional thermal event that may have
effected the central part of the basin.

The general uniformity in the geology and geophysics of the sedimentary
section in the central part of the Aleutain Basin, where these regional
correlations are observed, suggests that if hydrocarbon accumulations of

economic importance can be substantiated for one locality in this region, then
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it is likely that similar deposits may be found throughout the entire are.
The most promising economic area of the Aleutian Basin, the area of VAMP's is
large (about the size of the state of Washington) and the area lies on the
American side of the international treaty line. Although we can only
speculate on the future economic value, if any, of this deep-water 'frontier
area, our data indicate that the basin is nonetheless a promising one and
therefore deserves further exploration for energy resources.

In summary, the hydrocarbon prospects of the Navarin basin province as
well as the adjacent Aleutian Basin are both good. Because both areas are
very remote, development of these areas may not take place for a number of

years.
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Appendix I - Permeability and porosity measurements

The permeability and porosity values listed in Table I were measured by
Core Labs Inc., Bakersfield, California in January 1979 for the U.S.
Geological Survey. Since few, if any permeability measurements have been made
on semi-consolidated deep-sea sediment, a new procedure had to be designed by

Core Labs to handle the DSDP sediment samples.

Permeability:

Transversely-oriented sediment plugs, 1 1/4 inches in diameter by 1 inch
long, were extracted from the DSDP cores with a plastic sampling tube. The
water-saturated sediment was dried in a humidity oven by decreasing the oven's
humidity (100% to 10%) and temperature until all free water was expelled. The
drying procedure was done slowly over a period of days to avoid shrinkage of
the hydrated clay minerals due to loss of absorbed water. The plugs were
mounted in lead sheathing and compressed under a triaxial load of 250 psi to
seat the samples firmly in the sheath. Deformation of the samples was not
observed during the loading. The samples were placed in a test cell and air
was passed through the sample at a differential pressure, across the sample,
of 15 psi. The air flow was measured and permeability was calculated from
Darcy's Law. Since some samples were suspected of air leakage around the
sheath, all samples were stripped of their sheaths and were mounted in plastic
and rerun through the airflow measurements. About half of the samples showed
a decrease in the permeability of 10%-50% but the other half showed little or
no change. The values in Table I are the final results from the plastic

mounting rerun.
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Porosity:

The sediment samples were mounted in a sealed chamber and a volume of
helium, equal to the volume of the sample chamber at 100 psi was introduced.
The resulting chamber pressure was converted to grain volume of the sample
using Boyle's Law. Bulk volume was measured by immersion of the sample in
mercury. The porosity was calculated by dividing grain volume by bulk volume

and subtracting this number from 100%.
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